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The Class So Far

• Lecture 1: Calibrated Probabilities (Closed World)
• Lecture 2: Thresholding Confidence Indicators (Closed World)
• Lecture 3: Open Category Detection
• Lecture 4: Anomaly Detection
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Lecture 4: Anomaly Detection

• Definition: An “anomaly” is a data point generated by a process that is 
different than the process generating the “nominal” data

• Given:
• Training data: 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁
• Case 1: All data come from 𝐷𝐷0 the “nominal” distribution
• Case 2: The data come from a mixture of 𝐷𝐷0 and 𝐷𝐷𝑎𝑎 the “anomaly” distribution
• Test data: 𝑥𝑥𝑁𝑁+1, … , 𝑥𝑥𝑁𝑁+𝑀𝑀 from a mixture of 𝐷𝐷0 and 𝐷𝐷𝑎𝑎

• Find:
• The data points in the test data that belong to 𝐷𝐷𝑎𝑎

• Note: 𝐷𝐷𝑎𝑎 need not be a stationary distribution, but we general assume that 
𝐷𝐷0 is stationary.
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Papers for Today

• Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly 
Detection. ACM Transactions on Knowledge Discovery from Data, 
6(1), 1–39. http://doi.org/10.1145/2133360.2133363

• Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015). 
Systematic construction of anomaly detection benchmarks from real 
data. https://arxiv.org/abs/1503.01158

• Siddiqui, A., Fern, A., Dietterich, T. G., & Das, S. (2016). Finite Sample 
Complexity of Rare Pattern Anomaly Detection. In Proceedings of UAI-
2016 (p. 10). http://auai.org/uai2016/proceedings/papers/226.pdf
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Algorithms
• Density-Based Approaches

• RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
• EGMM: Ensemble Gaussian Mixture Model (our group)

• Quantile-Based Methods
• OCSVM: One-class SVM (Schoelkopf, et al., 1999)
• SVDD: Support Vector Data Description (Tax & Duin, 2004)

• Neighbor-Based Methods
• LOF: Local Outlier Factor (Breunig, et al., 2000)
• ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)

• Projection-Based Methods
• IFOR: Isolation Forest (Liu, et al., 2008)
• LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
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Robust Kernel Density Estimation

• Kernel Density Estimation
• Let 𝑘𝑘𝜎𝜎 𝑥𝑥, 𝑥𝑥′ be a positive semi-definite kernel such 

as the Gaussian kernel or the Student-t-kernel
• �̂�𝑝 𝑥𝑥 = 1

𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑘𝑘𝜎𝜎 𝑥𝑥, 𝑥𝑥𝑖𝑖

• Let Φ 𝑥𝑥 be the feature function corresponding 
to 𝑘𝑘𝜎𝜎

• 𝑘𝑘𝜎𝜎 𝑥𝑥, 𝑥𝑥′ = Φ 𝑥𝑥 ,Φ 𝑥𝑥′

• Then the KDE is the solution to a least squares 
problem in Hilbert space:

• �̂�𝑝 = min
𝑔𝑔∈ℋ

∑𝑖𝑖=1𝑁𝑁 Φ 𝑥𝑥𝑖𝑖 − 𝑔𝑔 𝑥𝑥𝑖𝑖 ℋ
2

• We can make this more robust by replacing the 
square loss with a robust loss
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Robust Loss Functions

�̂�𝑝 = argmin
𝑔𝑔∈ℋ

�
𝑖𝑖=1

𝑁𝑁

𝜌𝜌 Φ 𝑥𝑥𝑖𝑖 − 𝑔𝑔 𝑥𝑥𝑖𝑖 ℋ

This can be solved by Iteratively 
Reweighted Least Squares
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Example: 
Mixture of 2 Gaussians
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Ensemble of Gaussian Mixture Models

• 𝑃𝑃 𝑥𝑥 = ∑𝑘𝑘=1𝐾𝐾 𝑝𝑝𝑘𝑘 ⋅ Normal 𝑥𝑥 𝜇𝜇𝑘𝑘 , Σ𝑘𝑘 K=3
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Ensemble of GMMs
• Train 𝑀𝑀 independent Gaussian Mixture Models
• Train model 𝑚𝑚 = 1, … ,𝑀𝑀 on a bootstrap replicate of the data
• Vary the number of clusters 𝐾𝐾
• Delete any model with log likelihood < 70% of best model
• Compute average surprise: − 1

𝑀𝑀
∑𝑚𝑚 log𝑃𝑃𝑚𝑚(𝑥𝑥𝑖𝑖)
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One-Class Support Vector Machine
(Schoelkopf, Williamson, Smola, Shawe-Taylor, Platt, NIPS 2000)

• Given a kernel 𝑘𝑘(𝑥𝑥, 𝑥𝑥′), map the data into the 
feature space Φ 𝑥𝑥 and find a hyperplane that is 
as far from the origin as possible and separates 
1 − 𝜈𝜈 of the data points from the origin

• Solution to the following
• min
𝑤𝑤,𝜉𝜉,𝜌𝜌

1
2
𝑤𝑤 2 + 1

𝜈𝜈𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖 − 𝜌𝜌

• Subject to 𝑤𝑤 ⋅ Φ 𝑥𝑥𝑖𝑖 ≥ 𝜌𝜌 − 𝜉𝜉𝑖𝑖; 𝜉𝜉𝑖𝑖 ≥ 0
• The discriminant function is

• 𝑓𝑓 𝑥𝑥 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑘𝑘 𝑥𝑥, 𝑥𝑥𝑖𝑖 − 𝜌𝜌
• It is positive for nominal points and negative for 

anomalies
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Support Vector Data Description
(Tax & Duin, 2004)
• Find the smallest hypersphere in feature 

space that contains 1 − 𝜈𝜈 of the data points
• Solution to

• min
𝑅𝑅,𝑎𝑎

𝑅𝑅2 + 𝐶𝐶 ∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖
• Subject to 𝑥𝑥𝑖𝑖 − 𝑎𝑎 2 ≤ 𝑅𝑅2 + 𝜉𝜉𝑖𝑖; 𝜉𝜉𝑖𝑖 ≥ 0

• Generally only works well for the Gaussian 
kernel
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LOF: Local Outlier Factor
(Breunig, et al., 2000)

• Distance from 𝑥𝑥 to its k-th nearest neighbor 
divided by the average distance of each of 
those neighbors to their k-th nearest 
neighbors

• [The actual calculation is slightly more 
complex.]
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Angle-Based Outlier Detector (ABOD)
Kriegel, et al., 2008

• Let ∠ 𝑥𝑥, 𝑥𝑥1, 𝑥𝑥2 be the angle between 
𝑥𝑥1 and 𝑥𝑥2 as viewed from 𝑥𝑥

• The anomaly score for 𝑥𝑥 is the variance 
of 𝑉𝑉𝑎𝑎𝑉𝑉 ∠ 𝑥𝑥, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 for all 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 in the 
training data
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Isolation Forest [Liu, Ting, Zhou, 2011]

• Construct a fully random binary tree
• choose attribute 𝑗𝑗 at random
• choose splitting threshold 𝜃𝜃1 uniformly 

from min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗
• until every data point is in its own leaf
• let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖

• repeat 100 times
• let �̅�𝑑(𝑥𝑥𝑖𝑖) be the average depth of 𝑥𝑥𝑖𝑖

• 𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑠𝑠 𝑥𝑥𝑖𝑖 = 2
−

�𝑑𝑑 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖

• 𝑉𝑉(𝑥𝑥𝑖𝑖) is the expected depth 

𝑥𝑥⋅𝑗𝑗𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃1

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5

𝑥𝑥𝑖𝑖
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LODA: Lightweight Online Detector of Anomalies 
[Pevny, 2016]
• Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 sparse 

random projections
• Let 𝑤𝑤𝑚𝑚 = 0, … , 0
• Choose 𝑑𝑑 elements of 𝑤𝑤𝑚𝑚 and 

set them to normal random 
variate

• Π𝑚𝑚 𝑥𝑥 = 𝑤𝑤𝑚𝑚 ⋅ 𝑥𝑥
• 𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 corresponding 1-

dimensional density 
estimators

• Pevny uses optimal histograms

• 𝑆𝑆 𝑥𝑥 = − 1
𝑀𝑀
∑𝑚𝑚 log 𝑓𝑓𝑚𝑚(𝑥𝑥)

average “surprise”

𝑓𝑓1
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Benchmarking Study
[Andrew Emmott]

• Most AD papers only evaluate on a few datasets
• Often proprietary or very easy (e.g., KDD 1999)
• Research community needs a large and growing collection of public 

anomaly benchmarks
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Benchmarking Methodology

• Select 19 data sets from UC Irvine repository
• Choose one or more classes to be “anomalies”; the rest are 

“nominals”
• Manipulate

• Relative frequency
• Point difficulty 
• Irrelevant features
• Clusteredness

• 20 replicates of each configuration
• Result: 25,685 Benchmark Datasets
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19 Selected Data Sets
Steel Plates Faults
Gas Sensor Array Drift
Image Segmentation
Landsat Satellite
Letter Recognition
OptDigits
Page Blocks
Shuttle
Magic Gamma
Skin

Waveform
Yeast
Abalone
Communities and Crime
Concrete Compressive 
Strength
Wine
Year Prediction
Spambase
Particle
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Systematic Variation of Relevant Aspects

• Point difficulty: How deeply are the anomaly points buried in the 
nominals?

• Fit supervised classifier (kernel logistic regression)
• Point difficulty: 𝑃𝑃( �𝑦𝑦 = "𝑛𝑛𝑠𝑠𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛"|𝑥𝑥) for anomaly points

• Relative frequency: 
• sample from the anomaly points to achieve target values of 𝛼𝛼

• Clusteredness: 
• greedy algorithm selects points to create clusters or to create widely separated 

points
• Irrelevant features

• create new features by random permutation of existing feature values
• Result: 25,685 Benchmark Datasets
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Metrics

• AUC (Area Under ROC Curve)
• ranking loss: probability that a randomly-chosen anomaly point is ranked 

above a randomly-chosen nominal point
• transformed value: log 𝐴𝐴𝐴𝐴𝐴𝐴

1−𝐴𝐴𝐴𝐴𝐴𝐴

• AP (Average Precision)
• area under the precision-recall curve
• average of the precision computed at each ranked anomaly point
• transformed value: log 𝐴𝐴𝐴𝐴

𝔼𝔼 𝐴𝐴𝐴𝐴
= log 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
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Filtering Out Impossible Benchmarks

• For each algorithm and each benchmark
• Check whether we can reject the null hypothesis that the achieved AUC (or 

AP) is better than random guessing
• If a benchmark dataset is too hard for all algorithms, then we delete it from 

the benchmark collection
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Control Baselines

• Control Data Set
• Nominals: standard 𝑑𝑑-dimensional multivariate Gaussian
• Anomalies: uniform in the −4, +4 𝑑𝑑 hypercube

• Control Algorithm
• Distance to overall mean
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Analysis

• Linear ANOVA
• 𝑚𝑚𝑠𝑠𝑚𝑚𝑉𝑉𝑛𝑛𝑠𝑠 ~ 𝑉𝑉𝑓𝑓 + 𝑝𝑝𝑑𝑑 + 𝑠𝑠𝑛𝑛 + 𝑛𝑛𝑉𝑉 + 𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚 + 𝑎𝑎𝑛𝑛𝑔𝑔𝑠𝑠

• rf: relative frequency
• pd: point difficulty
• cl: normalized clusteredness
• ir: irrelevant features
• mset: “Mother” set
• algo: anomaly detection algorithm

• Validate the effect of each factor
• Assess the algo effect while controlling for all other factors
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Effect of Relative Frequency 

0.001 0.005 0.01 0.05 0.1
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Effect of Point Difficulty

0-0.17 0.17-0.33 0.33-0.5 0.5-1.0
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Effect of Clusteredness

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚2 < 𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚2 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚2 > 𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚2
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Effect of Irrelevant Features

1.2 1.5 2.0
Increase in average pairwise distance (relative to original data) 28



Choice of UCI Dataset

All datasets are more difficult than our synthetic control. 
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What Matters the Most?
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Algorithm Comparison
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Algorithm Strengths and Weaknesses

Hurt by 
Irrelevant Features

Robust to Irrelevant 
Features

iForest is least damaged by irrelevant features
32



Effect of Clusteredness
Hurt By Clustered 

Anomalies
Robust to Clustered 

Anomalies

33



iForest Advantages

• Most robust to irrelevant features
• for both AUC and LIFT

• Second most robust to clustered anomaly points
• for AUC
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Towards a Theory of Anomaly Detection 
[Siddiqui, et al.; UAI 2016]

• Existing theory on sample complexity
• Density Estimation Methods: 

• Exponential in the dimension 𝑑𝑑
• Quantile Methods (OCSVM and SVDD):

• Polynomial sample complexity

• Experimentally, many anomaly detection algorithms learn very quickly 
(e.g., 500-2000 examples)

• New theory: Rare Pattern Anomaly Detection
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Pattern Spaces

• A pattern ℎ:ℜ𝑑𝑑 → {0,1} is an indicator function for a measurable 
region in the input space

• Examples:
• Half planes
• Axis-parallel hyper-rectangles in −1,1 𝑑𝑑

• A pattern space ℋ is a set of patterns (countable or uncountable)
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Rare and Common Patterns

• Let 𝜇𝜇 be a fixed measure over ℜ𝑑𝑑

• Typical choices: 
• uniform over −1, +1 𝑑𝑑

• standard Gaussian over ℜ𝑑𝑑

• 𝜇𝜇(ℎ) is the measure of the pattern defined by ℎ
• Let 𝑝𝑝 be the “nominal” probability density defined on ℜ𝑑𝑑 (or on some 

subset)
• 𝑝𝑝(ℎ) is the probability of pattern ℎ
• A pattern ℎ is 𝜏𝜏-rare if 

𝑓𝑓 ℎ =
𝑝𝑝 ℎ
𝜇𝜇 ℎ

≤ 𝜏𝜏

• Otherwise it is 𝜏𝜏-common
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Rare and Common Points

• A point 𝑥𝑥 is 𝜏𝜏-rare if there exists a 𝜏𝜏-rare ℎ such that ℎ 𝑥𝑥 = 1
• Otherwise a point is 𝜏𝜏-common

• Goal: An anomaly detection algorithm should output all 𝜏𝜏-rare points 
and not output any 𝜏𝜏-common points
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PAC-RPAD
• Algorithm 𝒜𝒜 is PAC-RPAD for 

• pattern space ℋ, 
• measure 𝜇𝜇, 
• parameters 𝜏𝜏, 𝜖𝜖, 𝛿𝛿

if for any probability density 𝑝𝑝 and any 𝜏𝜏, 𝒜𝒜 draws a sample from 𝑝𝑝 and 
with probability 1 − 𝛿𝛿 detects all 𝜏𝜏-rare points and rejects all (𝜏𝜏 + 𝜖𝜖)-
commons in the sample

• 𝜖𝜖 allows the algorithm some margin for error
• If a point is between 𝜏𝜏-rare and 𝜏𝜏 + 𝜖𝜖 -common, the algorithm can treat it 

arbitrarily
• Running time polynomial in 1

𝜖𝜖
, 1
𝛿𝛿

, and 1
𝜏𝜏
, and some measure of the 

complexity of ℋ
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RAREPATTERNDETECT

• Draw a sample of size 𝑁𝑁(𝜖𝜖, 𝛿𝛿) from 𝑝𝑝
• Let �̂�𝑝(ℎ) be the fraction of sample points that satisfy ℎ

• Let 𝑓𝑓 ℎ = �𝑝𝑝 ℎ
𝜇𝜇 ℎ

be the estimated rareness of ℎ

• A query point 𝑥𝑥𝑞𝑞 is declared to be an anomaly if there exists a pattern 
ℎ ∈ ℋ such that ℎ 𝑥𝑥𝑞𝑞 = 1 and 𝑓𝑓 ℎ ≤ 𝜏𝜏.
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Results

• Theorem 1: For any finite pattern space ℋ, RAREPATTERNDETECT is PAC-
RPAD with sample complexity 

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

log ℋ + log
1
𝛿𝛿

• Theorem 2: For any pattern space ℋ with finite VC dimension 𝒱𝒱ℋ, 
RAREPATTERNDETECT is PAC-RPAD with sample complexity 

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

𝒱𝒱ℋ log
1
𝜖𝜖2

+ log
1
𝛿𝛿
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Examples of PAC-RPAD ℋ

• Half spaces
• Axis-aligned hyper-rectangles (related to iForest leaves)
• Stripes (equivalent to LODA’s histogram bins)
• Ellipsoids
• Ellipsoidal shells (difference of two ellipsoidal level sets)
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Isolation RPAD (aka Pattern Min)

• Grow an isolation forest
• Each tree is only grown to depth 𝑘𝑘
• Each leaf defines a pattern ℎ
• 𝜇𝜇 is the volume (Lebesgue measure)
• Compute 𝑓𝑓(ℎ) for each leaf

• Details
• Grow the tree using one sample
• Estimate 𝑓𝑓 using a second sample
• Score query point(s)

𝑥𝑥1 < 0.2

𝑥𝑥2 < 0.6

𝑥𝑥1 < 0.5

ℎ1

ℎ2

ℎ3 ℎ4
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Results: Covertype

PatternMin is slower, but eventually beats IFOREST
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Results: Shuttle

• PatternMin is consistently beats iForest for 𝑘𝑘 > 1
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RPAD Conclusions

• The PAC-RPAD theory seems to capture the behavior of algorithms 
such as IFOREST

• It is easy to design practical RPAD algorithms
• Theory requires extension to handle sample-dependent pattern 

spaces ℋ
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Discussion
• RPAD theory does not explain the good AUC results

• Can we develop a PAC theory for anomaly ranking?
• iForest trains on small subsamples of the data

• This gives better performance. Why?
• How large should the ensembles be?

• iForest, LODA, EGMM
• Deep Learning for Anomaly Detection

• Deep Density Estimation (e.g., Masked Autoregressive Flow)
• Generalized Fisher Discriminants
• GANs
• Need to compare against simple baselines
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